Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(2,4-Dichlorophenyl)methanesulfonamide

B. Thimme Gowda, ${ }^{\text {a* }}$ Sabine Foro ${ }^{\text {b }}$ and Hartmut Fuess ${ }^{\text {b }}$

a Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com
Received 24 May 2007; accepted 28 May 2007
Key indicators: single-crystal X-ray study; $T=299 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.095 ; w R$ factor $=0.277$; data-to-parameter ratio $=14.3$.

The conformation of the $\mathrm{N}-\mathrm{H}$ bond in the structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S}$, is nearly syn to the orthochloro substituent, similar to the syn conformation observed for the N-(2,4-dimethylphenyl)methanesulfonamide. The geometric parameters are similar to those in other methanesulfonanilides, except for some differences in the bond and torsion angles. The amide H atom is readily available to a receptor molecule during its biological activity, as it lies on one side of the plane of the benzene ring, similar to those in other N -arylmethanesulfonamides. The molecules are packed into chains through both $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2007a,b,c,d,e,f, $g, h, i, j, k, l)$; Jayalakshmi \& Gowda (2004); Klug (1968).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S}$
$M_{r}=240.10$
Triclinic, $P \overline{1}$
$a=7.580$ (1) A
$b=8.269$ (1) \AA
$c=8.285$ (1) A
$\alpha=83.70(1)^{\circ}$
$\beta=87.95(1)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.042, T_{\text {max }}=0.307$
1831 measured reflections
1701 independent reflections 1601 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
3 standard reflections frequency: 120 min intensity decay: 5.0\%

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.095$
$w R\left(F^{2}\right)=0.277$
$S=1.37$
1701 reflections

119 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.84 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.65 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.40	$2.979(5)$	125
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.86	2.80	$3.494(3)$	138

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1,-y+1,-z$.
Data collection: CAD-4-PC (Enraf-Nonius, 1996); cell refinement: $C A D-4-P C$; data reduction: REDU4 (Stoe \& Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

BTG gratefully thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2023).

References

Enraf-Nonius (1996). CAD-4-PC Software. Version 2.0. Enraf-Nonius, Delft, The Netherlands.
Gowda, B. T., Foro, S. \& Fuess, H. (2007a). Acta Cryst. E63, o2337.
Gowda, B. T., Foro, S. \& Fuess, H. (2007b). Acta Cryst. E63, o2338.
Gowda, B. T., Foro, S. \& Fuess, H. (2007c). Acta Cryst. E63, o2339.
Gowda, B. T., Foro, S. \& Fuess, H. (2007d). Acta Cryst. E63, o2340.
Gowda, B. T., Foro, S. \& Fuess, H. (2007e). Acta Cryst. E63, o2569.
Gowda, B. T., Foro, S. \& Fuess, H. (2007f). Acta Cryst. E63, o2570.
Gowda, B. T., Foro, S. \& Fuess, H. (2007g). Acta Cryst. E63, o2597.
Gowda, B. T., Foro, S. \& Fuess, H. (2007h). Acta Cryst. E63, o3014.
Gowda, B. T., Foro, S. \& Fuess, H. (2007i). Acta Cryst. E63, o3015.
Gowda, B. T., Foro, S. \& Fuess, H. (2007j). Acta Cryst. E63, o3085.
Gowda, B. T., Foro, S. \& Fuess, H. (2007k). Acta Cryst. E63, o3086.
Gowda, B. T., Foro, S. \& Fuess, H. (2007l). Unpublished results.
Jayalakshmi, K. L. \& Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491-500.
Klug, H. P. (1968). Acta Cryst. B24, 792-802.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (1987). REDU4. Stoe \& Cie GmbH, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3087 [doi:10.1107/S1600536807026062]

N-(2,4-Dichlorophenyl)methanesulfonamide

B. T. Gowda, S. Foro and H. Fuess

Comment

The structural studies of sulfonanilides are of interest due to their biological activity. In the present work, the structure of N-(2,4-dichlorophenyl)-methanesulfonamide (24DCPMSA) has been determined to explore the substituent effects on the solid state structures of sulfonanilides (Gowda et al., 2007a-l). The structure of 24DCPMSA (Fig. 1) resembles those of N-(phenyl)-methanesulfonamide (PMSA) (Klug, 1968), N-(2-chlorophenyl)-methanesulfonamide (2CPMSA) (Gowda et al., 2007l), N-(2,3-dichlorophenyl)- methanesulfonamide (23DCPMSA)(Gowda et al., 2007k), N-(2,4-dimethylphenyl)methanesulfonamide (24DMPMSA)(Gowda et al., 2007i) and other methylsulfonanilides (Gowda et al., 2007a-h). The conformation of the N—H bond in 24DCPMSA is nearly syn to the ortho-chloro substituent, similar to the syn conformation observed for 24DMPMSA (Gowda et al., 2007i). The ortho substitution of either a chloro or methyl group in PMSA changes its space group from monoclinic $P 2_{1} / c$ to triclinic $\mathrm{P}-1$. But the substitution of an additional chloro group in the para position of 2CPMSA to produce 24DCPMSA does not further alter the space group, in contrast to the change over from triclinic P-1 to monoclinic $P 2_{1} / n$ on substitution of an additional methyl group at the para position in N-(2-methylphenyl)- methanesulfonamide (2MPMSA) (Gowda et al., 2007d) to form 24DMPMSA and monoclinic $P 2{ }_{1} / c$ space group observed for 23DCPMSA (Gowda et al., 2007k). The geometric parameters in 24DCPMSA are similar to those in PMSA, 2CPMSA, 23DCPMSA, 24DMPMSA and other methanesulfonanilides except for some difference in the bond and torsional angles. The amide hydrogen is readily available to a receptor molecule during its biological activity as it sits alone on one side of the plane of the phenyl group similar to those in other N-(aryl)-methanesulfonamides. The molecules in 24DCPMSA are packed into chains in the direction of b axis (Fig. 2) through both $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 1).

Experimental

The title compound was prepared according to the literature method (Jayalakshmi \& Gowda, 2004). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Jayalakshmi \& Gowda, 2004). Single crystals of the title compound were obtained from a slow evaporation of its ethanolic solution and used for X-ray diffraction studied at room temperature.

Refinement

The H atom of the NH group was located in a diffrerence map and its position refined. The carbon-bound H atoms were positioned with idealized geometry and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA\left(\mathrm{CH}\right.$ aromatic) or $0.96 \AA\left(\mathrm{CH}_{3}\right)$. Isotropic displacement parameters for all H atoms were set equal to $1.2 U_{\text {eq }}$ (parent atom).

supplementary materials

Figures

Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

N-(2,4-Dichlorophenyl)methanesulfonamide

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{~S}$
$M_{r}=240.10$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=7.580$ (1) \AA
$b=8.269$ (1) \AA
$c=8.285(1) \AA$
$\alpha=83.70(1)^{\circ}$
$\beta=87.95$ (1) $^{\circ}$
$\gamma=68.57(1)^{\circ}$

$$
V=480.47(10) \AA^{3}
$$

$$
\begin{aligned}
& Z=2 \\
& F_{000}=244 \\
& D_{\mathrm{x}}=1.660 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \lambda=1.54180 \AA \\
& \text { Cell parameters from } 25 \text { reflections } \\
& \theta=6.8-25.8^{\circ} \\
& \mu=7.85 \mathrm{~mm}^{-1} \\
& T=299(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.52 \times 0.32 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4	$R_{\mathrm{int}}=0.048$
diffractometer	$\theta_{\max }=66.9^{\circ}$
Radiation source: fine-focus sealed tube	$\theta_{\min }=5.4^{\circ}$
Monochromator: graphite	$h=-9 \rightarrow 9$
$T=299(2) \mathrm{K}$	$k=-9 \rightarrow 9$
$\omega / 2 \theta$ scans	$l=-9 \rightarrow 0$
Absorption correction: ψ scan	3 standard reflections
(North et al., 1968)	every 120 min
$T_{\min }=0.042, T_{\max }=0.307$	intensity decay: 5.0%
1831 measured reflections	

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.095$
$w R\left(F^{2}\right)=0.277$
$S=1.37$
1701 reflections
119 parameters

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.2 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.84 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.65$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 1997),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.3441(5)$	$0.4168(5)$	$0.2568(4)$	$0.0353(9)$
C2	$0.2920(5)$	$0.3970(5)$	$0.1016(4)$	$0.0366(9)$
C3	$0.2380(5)$	$0.5343(5)$	$-0.0203(5)$	$0.0402(10)$
H3	0.2052	0.5185	-0.1229	0.048^{*}
C4	$0.2337(5)$	$0.6943(5)$	$0.0135(5)$	$0.0402(10)$
C5	$0.2829(6)$	$0.7203(5)$	$0.1657(5)$	$0.0435(10)$
H5	0.2785	0.8298	0.1870	0.052^{*}
C6	$0.3382(6)$	$0.5817(5)$	$0.2844(5)$	$0.0423(10)$
H6	0.3727	0.5986	0.3860	0.051^{*}
C7	$0.1136(6)$	$0.1897(7)$	$0.4902(7)$	$0.0582(12)$
H7A	0.1653	0.0805	0.4440	0.070^{*}
H7B	0.0322	0.2772	0.4122	0.070^{*}
H7C	0.0421	0.1765	0.5853	0.070^{*}
N1	$0.4140(4)$	$0.2726(4)$	$0.3754(4)$	$0.0402(9)$
H1N	0.5211	0.1917	0.3592	0.048^{*}
O1	$0.4295(5)$	$0.1117(4)$	$0.6438(4)$	$0.0533(9)$

O2	$0.2194(5)$	$0.4216(4)$	$0.6006(4)$	$0.0528(9)$
S1	$0.29870(12)$	$0.25352(12)$	$0.54332(10)$	$0.0385(6)$
Cl1	$0.29909(18)$	$0.19478(13)$	$0.05738(13)$	$0.0544(6)$
Cl2	$0.17636(15)$	$0.86631(14)$	$-0.14033(13)$	$0.0542(6)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0286(16)$	$0.0312(19)$	$0.0447(18)$	$-0.0097(14)$	$0.0020(13)$	$-0.0028(15)$
C2	$0.0343(17)$	$0.032(2)$	$0.0433(18)$	$-0.0125(15)$	$0.0027(14)$	$-0.0051(16)$
C3	$0.0344(18)$	$0.038(2)$	$0.0462(19)$	$-0.0111(16)$	$0.0006(15)$	$-0.0033(17)$
C4	$0.0333(18)$	$0.034(2)$	$0.052(2)$	$-0.0125(16)$	$0.0045(15)$	$0.0008(17)$
C5	$0.046(2)$	$0.0310(19)$	$0.055(2)$	$-0.0157(16)$	$0.0037(17)$	$-0.0058(17)$
C6	$0.0416(19)$	$0.038(2)$	$0.0489(19)$	$-0.0161(16)$	$-0.0034(16)$	$-0.0044(17)$
C7	$0.044(2)$	$0.055(3)$	$0.080(3)$	$-0.023(2)$	$0.005(2)$	$-0.008(2)$
N1	$0.0335(15)$	$0.0297(16)$	$0.0499(18)$	$-0.0041(12)$	$0.0024(13)$	$-0.0001(14)$
O1	$0.062(2)$	$0.0393(17)$	$0.0464(15)$	$-0.0057(14)$	$-0.0051(13)$	$0.0036(13)$
O2	$0.0627(19)$	$0.0360(17)$	$0.0491(16)$	$-0.0054(14)$	$0.0043(14)$	$-0.0063(14)$
S1	$0.0398(8)$	$0.0281(8)$	$0.0423(8)$	$-0.0068(5)$	$0.0007(5)$	$-0.0011(5)$
C11	$0.0720(9)$	$0.0341(9)$	$0.0594(9)$	$-0.0207(6)$	$-0.0036(6)$	$-0.0081(5)$
C12	$0.0552(9)$	$0.0405(9)$	$0.0583(9)$	$-0.0121(6)$	$0.0016(6)$	$0.0120(5)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 6$	$1.392(5)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.402(5)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.409(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.384(6)$
$\mathrm{C} 2-\mathrm{C} 11$	$1.732(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.371(6)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.388(6)$
$\mathrm{C} 4-\mathrm{Cl} 2$	$1.739(4)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.374(6)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$117.2(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$121.4(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$121.2(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.9(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl} 1$	$118.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	$119.8(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$118.6(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.7
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.5(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl} 2$	$119.3(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Cl} 2$	$119.1(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.0(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.5

C5-H5	0.9300
C6-H6	0.9300
C7-S1	1.754 (4)
C7-H7A	0.9600
C7-H7B	0.9600
C7-H7C	0.9600
N1-S1	1.640 (3)
N1-H1N	0.8600
O1-S1	1.431 (3)
$\mathrm{O} 2-\mathrm{S} 1$	1.426 (3)
C1-C6-H6	119.1
S1-C7-H7A	109.5
S1-C7-H7B	109.5
H7A-C7-H7B	109.5
S1-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
C1-N1-S1	122.4 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	118.8
S1-N1-H1N	118.8
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	119.49 (19)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	107.84 (18)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	105.42 (18)
O2-S1-C7	108.8 (2)

sup-4

supplementary materials

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.5
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$121.9(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.1
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.4(5)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-174.6(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 11$	$179.1(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 1$	$4.1(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.7(6)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-179.4(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.3(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 2$	$177.2(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.4(6)$

$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 7$	$108.1(2)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 7$	$106.5(2)$
$\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-176.5(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.8(6)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.4(6)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$175.3(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1$	$70.8(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1$	$-114.4(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 2$	$-40.3(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 1$	$-169.0(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 7$	$76.4(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.40	$2.979(5)$	125
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{Cl2} 2^{\mathrm{ii}}$	0.86	2.80	$3.494(3)$	138

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+1,-y+1,-z$.

supplementary materials

Fig. 1

Fig. 2

